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A method for the separate construction of the main stress-strain state (the internal calculation) and the boundary corrections 
(the boundary calculations) are discussed in the case of a linear static problem in the theory of shells and plates. It is assumed 
that the internal calculation is carried out using an iterative process based on the Kirehhoff-Love theory. The boundary calculation 
involves the construction of antiplane and plane boundary layers, that is, in the initial approximation they reduce to the solution 
of antiplane and plane problems in the theory of elasticity. 

Investigation of the asymptotic behaviour of the boundary corrections shows that near a weakly clamped edge only the correction 
from the antiplane bouodary layer is important and that near a fairly rigidly damped edge only the correction from the plane 
boundary layer is important. 

The advisability of the use of the shear theory of the bending of plates for investigating boundary elastic phenomena is discussed 
from the point of view of the results obtained. It is shown that, close to the free edge, its use is justified and is adequate for the 
method described in the paper both with regard to the numerical results and with regard to the nature of the mathematical 
apparatus. As a method for investigating boundary elastic phenomena, shear theories lose their meaning close to a fairly rigidly 
damped edge since they only enable one to construct the minor part of the correction asymptotically. 

1. The elastic properties of a thin isotropic body which is bounded by faces (which are sufficiently 
extended in two directions) and end faces (which are thin in one of the directions) are discussed. We 
shall consider the linear static properties of the stress-strain state (SSS) and assume that the external 
forces on the faces are specified, that is, cases when it is necessary to take account of any damping of 
the faces are ignored (these cases are discussed in [1]). 

We shall refer to the thin bodies which have been described as shells and, unless otherwise stated, 
we shall permit these shells to degenerate into plates. 

The property of the shell which is expressed by the structural formula 

(SSS)total = (SSS)int + (SSS)bound (1.1) 

is the basis of the discussion. In this formula (SSS)total , (SSS)int and (SSS)bound represent the total, internal 
and boundary (generated by an edge or by other stress concentrators) SSS of the shell. 

The problem of approximate methods for the internal calculation of the shell, that is, the determination 
of its (SSS)int and the boundary calculation, that is, the determination of the (SSS)bound, form the main 
subject of this treatraent. Here both methods are constructed on the basis of the asymptotic integration 
(for a thin domain) of the three-dimensional linear differential equations of the static theory of isotropic 
elasticity. Methods which are traditional in the case of such approaches are used here. 

1. Integrals with different properties are investigated separately. 
2. The asymptotic: properties of the integrals are predicted and the assumptions which are adopted 

are later checked for the correctness of the procedures for solving the boundary-value problems which 
follow from them. 

In the theory of shells, it makes sense to split the overall calculation into internal and external calcula- 
tions not only from the mathematical point of view but also from a physical point of view, since the 
practical importance of (SSS)int and (SSS)bo,nd is not the same. 

The asymptotic approaches used here are compared with engineering approaches. It is shown that 
the Kirchhoff-Love theory is completely confirmed as an approximate method for investigating (SSS)mt. 
However, the Timoshenko-Reissner theory requires a number of stipulations both as a method for 
refining the internal calculation and, in particular, as a method for the boundary calculation. 
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974 A.L .  Gol'denveizer 

2. In satisfying the scheme described in Section 1, we shall define (SSS)tnt by the formulae 

= i l  + °t3 | 0.. = 7,.l(,t ° + ;x-t+2p-'=xl ) "t; i 
t, Rj) 

= +~X % )  

---- I - ~ )  ---- ~LP ('[03 + ~'~13 + ~L-1+2p-c+br2't2 ) (2.1) xi3 - l+  t~J )Oi3 "~ i3 

= (1 + . .~ . l ( l  + ~.~.~/G33 - _ ~Lc(,t0 + ~,t~ + ~-'+2p-c+b~2,C2 + ~,-21+4,-2c+b~3,f3) 1;33 
tf~ )~, t¢2 ) " 

~i = Xt-P+b(~ ° +~X-1+2P-c ~i),z ~3 = Xt-c+b( ~°3 + ~ X-l+c~13) 

the meaning of which is as follows. 
We shall assume that the elastic medium forming the shell is referred to the traditional tri-orthogonal 

system of coordinates by the equality 

P = M(oq,  ct2) + ot3n (2.2) 

where M is the vector of  the median surface, specified in the lines of curvature and n is the unit vector 
normal to the surface M. 

The stresses and displacements of the spatial medium, relative to the coordinates (2.2), are implied 
by ost, %. The so-called asymmetric stresses are denoted by xi, xij, xi3, x33 (i ;~ j = 1, 2). These must 
satisfy the face conditions 

_ + Xr3i~x3=±h- Xr3 (r = 1,2,3) (2.3) 

in which x~3 are known functions specifying the external forces on the faces and h is the half-thickness 
of the shell. 

In addition, the following notation has been used: ~, is a large parameter which is defined by the 
formula 

Xt= R/h (2.4) 

R, for a shell, is the characteristic radius of curvature of the median surface and, in the case of a plate, 
k k is a certain characteristic dimension of its middle plane, ~/, ~ ,  ~3, ~3, a~i, a~3 are functions of the two 

variables a l  and or2, ~ = cta/h is a dimensionless normal coordinate, b andp are arbitrary numbers which 
satisfy the requirements 

O<~p<l ,  O < ~ b < ~ l - 2 p  (2.5) 

the number c is expressed in terms of I andp  by the following formulae: for a shell 

c=O (p <~ i/2), c = 2 p - l  (p >~ l/2) (2.6) 

and, for a plate, for anyp 

c = 2p - i (2.7) 

and Rj are the principal radii of curvature of the median surface. 
It is assumed that the stress and displacement functions (2.1) satisfy the three-dimensional equations 

of the theory of elasticity and the face conditions (2.3) with a certain asymptotic accuracy (as 
• k k --> oo) If ~, ~ ,  ~3, ~3, ~i, ~3 are integrals of a certain two-dimensional system of equations which are 

equivalent to the equations of the Kirchhoff-Love theory. 
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The latter assumption can be interpreted more specifically as follows. 
We make the scale transformation of the independent variables 

Oq = R~,-P~I, Oc 2 = R~.-t'~2, Ot 3 = R~.-t~ (2.8) 

in the spatial equations of the theory of elasticity which is traditional in the case of asymptotic approaches 
and we shall consider in the treatment only those integrals of the resulting equations for which, firstly, 
differentiation of the required quantities with respect to ~1 and ~2 does not change their asymptotic 
order and, secondly, all the quantities 

1 k k k k l ( u ~ , u 3  ~) -~ ('ci ,'cij,'fi3,'f33 ) and .-~ 

(E is Young's modulus) have the same asymptotic order. The three-dimensional differential equations 
of the theory of elasticity, written in the coordinates (2.2) with the independent variables ~1, ~2, ~ and 
the required functions ~/, ~,  ~3, ~3, ~k, ~k are then transformed into equalities in which it is easy to 
obtain a relative asi~Taptotic estimate for each term. It is determined by factors of the form of k0 which 
appear in the equations of the theory of elasticity as a consequence of the use of formulae (2.1) and 
(2.8). 

If, in each separately taken equality with such properties, terms containing the factor ~.-~ are neglected 
compared with terms containing the factor Z-P when ~t ~> p, we shall say that the number p is a 
characteristic of their accuracy in the ease of the equations obtained in this manner. The hypothesis 
under discussion then reduces to the following assertion: the three-dimensional equations of the theory 
of elasticity and the: face conditions (2.3) are satisfied with an accuracy characteristic p = 2 / -  2p, if the 
required quantifies,, introduced by formulae (2.1), are related to the forces, moments, displacements 
and angles of rotation (Ti, Sij, Gi, Hij, Ni, ~i, w, "ti) of the Kirchhoff-Love theory by the following 
intermediate formulae 

2• o 1 S o  ' l =_~.21-2p+c-b 3 Gi ,co = Ti ' Xi j = " ~  ,ci 2R 2 

= 0 + !  2-1+2p-c+b-2 ~ l -p  ,CI j ~21-2p+c-b 3 Hi j ,  '~i3 "" Xi3 = -  
2R 2 3 2R 

I "b ~.-1+2p-c+b'~?3 = ~'-p 
'~i3 T ( "C~3 + '~i'3 ) 

Ni 

(2.9) 

1 ~'-P- + 
xi3 = --~-~x;3 +x?3) 

0 m ~,-l+c-b W 1)0 m ~.-l+p-bui,  1) 3 -- 

I 1 _~-c V (TI+T2)  VJi = -R~'-l-r+c-bYi, ~3 = 2"E 

(i ~ j = I, 2) 

and if the two-dimensional quantities which have been enumerated above on the right-hand sides of 
Eqs (2.9) satisfy the two-dimensional equations of the Kirchhoff-Love theory. 

The property of (SSS)int, expressed by formulae (2.1), can be directly verified by substituting (2.1) 
and (2.8) into the three-dimensional equations of the theory of elasticity and the face conditions (2.3) 
using the above-mentioned rule for neglecting small terms. The corresponding long, but elementary, 
calculations are presented in [2], from where the notation has also been borrowed. 

3. The asymptotic form of a certain class of stress-strain states of a thin spatial elastic body, on the 
faces of which the external forces are specified, is given by formula (2.1). Such stress-strain states can 
be identified with (SSS)mt in the structural formula (1.1) with an accuracy characteristic p = 2 / -  2p 
and, using the intermediate formulae (2.9), it is possible to cons t ruc t  (SSS)int using the Kirchhoff-Love 
theory. 
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The numbers l , p  and b in (2.1) have the following physical meaning. 
The number l, for fixed h, R, k, is defined by formula (2.4). A fundamentally important asymptotic 

property of the stress--strain state under discussion is specified by the ratio p / l  = t. It follows from 
the first two formulae of the scale transformation (2.8), after they have been transformed to the 
form 

that t has the meaning of an index of the variability of a given SSS with respect to the variables al  and 
a2, that is, in the median surface of the shell. 

Relations (2.6) and (2.7) hold for the number c. The first of these are connected with the generally 
known fact that, if a shell does not degenerate into a plate, then two kinds of (SSS)int exist in it. When 
t < 1/2, the forces and, when t > 1/2, the moments in them are asymptotically predominant. On account 
of this, plates are sometimes treated here not as the simplest shells but as thin elastic bodies with special 
properties. 

The number b in formulae (2.1) appears because, in a shell which does not degenerate into a plate, 
(SSS)int can have two types of asymptotic forms. They have been called [2] normal asymptotic forms 
(when b = 0) and special asymptotic forms (when 0 < b < l - 2p). 

From a physical point of view, the asymptotic form of (SSS)int become special when the deformation 
of the middle surface is a pseudobending [3], that is, a change in shape which is close in a certain sense 
to that which is called an infinitesimal bending in the theory of surfaces. In practical problems, 
pseudobending of the median surface is a not uncommon phenomenon. However here, in order to avoid 
multivariant arguments, we shall always put b = 0, that is, we shall assume that the asymptotic form of 
the (SSS)int is normal. 

4. The approximate construction of (SSS)int can also be carried out for a higher value of the accuracy 
characteristic, that is, when p > 2 / -  2p, using asymptotic methods. In order to do this, it is necessary, 
in particular, to make formulae (2.1), which specify the properties of the (SSS)int , more  complicated. 
For instance, when p > 4 / -  4p, it will be necessary, in each of the circular brackets on the right-hand 
sides of (2.1), to increase by unity the degree of the polynomials in ~ appearing there. The required 
system of two-dimensional equations becomes correspondingly more complex and there is an increase 
in its order. Such systems have been obtained for shells [4] and also for plate bending and plate extension 
(compression) [5, 6]. It has been found that, while the asymptotic theory when p = 2 / -  2p can be 
considered as an analogue of the Kirchhoff-Love theory, when p = 4 / -  4p, one can speak of an 
asymptotic analogue of shear theory (Timoshenko-Reissner shear theory is to be understood hence- 
forth). However, the analogy is far less complete in the second case than in the first. This has been 
emphasized in [4--6] and will be still more specifically discussed here. 

For now, we note a feature of the analogy: both in the asymptotic theory p > 2 / -  2p and in the 
shear theories, there is an increase in the order of the two-dimensional differential equations. This 
means that the transition from p = 2 / -  2p to p = 41 - 4p corresponds not only to a refinement of the 
solutions given by the Kirchhoff-Love theory, but also to the appearance of"additional" solutions, and 
they have a variability index t = 1 in both the asymptotic theory p = 4 / -  4p and shear theory constructed 
on the basis of physical hypotheses. This imparts the features of an analogy with (SSS)bouna to the 
"additional" solutions, but is also evidence of their mathematical insufficiency since the asymptotic 
method is based on the assumption that t < 1. This issue will be further and more specifically discussed 
here. 

5. The asymptotic properties of (SSS)bound in the structural formula (1.1) are determined in the 
following manner. 

We shall assume that a shell has single dosed edge and choose the tri-orthogonal system of coordinates 
(2.2) such that this edge coincides with the coordinate surface tXl = 0. 

We shall make the following substitutions in the equations of the theory of elasticity for the stresses 
(~ik and the displacements a~k, and, also, for the independent variables tz~. 

=,,.11+-31o,. 
{ Rj) e 
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( ~x3)% _ +(x3 l+(X3 033 s,,_ I, 
V k = h-l'ok, Ot I = Rk- t~) ,  Ot 2 = R~,-~12, Ot 3 = Rk- t~  

( i¢  j = 1,2; k = 1,2,3) 

(5.1) 

In these formulate it is assumed that ~, ~ l have the same meaning as in (2.1). We mean by ~ ~<p, a 
number related by the formula x = ~/l to the index of variability with respect to the variable t~2. This 
means that xl is a so-called partial variability index of (SSS)bo~nd, that is, it is a characteristic of the 
variability along the edge of the shell. It is usually known from the conditions of the problem and is 
related to the general variability index t by the inequality xa <~ p. 

By (SSS)bound, it is necessary to understand that set of quantities Si~, Vk which corresponds to those 
integrals of the transformed system of equations of the theory of elasticity in which differentiation with 
respect to rh, ~i2, ~ does not change the asymptotic order of the required functions. 

Apart from this, we require that Sik~ Vk should be of the form O(7~ -~) with a single Ix for all of these 
quantities. Then, the differential equations of the theory of elasticity for (SSS)bound will possess the same 
properties as were indicated in Section 2 in the case of the equations defining (SSS)int. In these equations, 
it is easy to determine the relative asymptotic of each term in any equation which is taken separately. 
Also, as was shown in [2, 7, 8], (SSS)bound is defined with a characteristic accuracy p = l - n by two 
systems of equations. 

System a 

System b 

1 bSl2 I- bS23 
A, 

1 OV 2 2(1 + v)SI2 = 0, bS2 - 2(1 + v)$23 = 0 
A l ~r h b~ 

1 bSi!. bS l3= 1 bSi3 bS33 
AI ~1  . ~  0, AI 0ql + W = 0  

1 DE [S11-v($22+$33)] =0, -[S22-v(SH +$33)] =0 
AI ~ql 

bY3 bv~ I 2% 2(1+v)S~=o 
b~ [Sa3--v(Sii +S22)]=O' "~'1 AI ~i~ 1 

(5.2) 

(5.3) 

(in these equations, Aa is the coefficient of the first quadratic form of the median surface). 
System (5.2) is closed with respect to the quantities P = (Sin, $23; 1"2) while system (5.3) is dosed 

with respect to the quantities Q = (Saa, $22, $33, $13; V1, I"3). The two-dimensional equations (5.2) of 
the so-called antiplane problem of the theory of elasticity are obtained for P while the equalities (5.3) 
form the equations of the plane problem of the theory of elasticity for Q (in both cases 111 = I~lAldoq 
and ~ are the independent variables). 

The initial approximation which has been described above can be refined by the method of iterations 
and, apart from the principal stresses and displacements, the secondary stresses and displacements can 
be constructed as)nnptotically. Their asymptotic form is expressed by the relations derived in [2] 

Q'(a)  = O[~,-t+~P(a)], P ' (b )  = O[~,-t+XQ(b)] (5.4) 

Quantities which are asymptotically secondary for an SSS of a given form will henceforth be given a 
prime. 

Together, P and Q encompass all the required quantities of a certain (SSS)bound. In cases when the 
asymptotically principal part of the stresses and displacements is determined by system a, the (SSS)bound 
is called an antiplane boundary layer and, when the principal part is determined by system b, we shall 
speak of a plane boundary layer. The corresponding stresses and displacements will be labelled with 
the additional superscripts a and b. 
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It is seen from formula (5.4) that (SSS)[o~d and  (SsS)bund are directly opposite to one another as 
regards their asymptotic properties: the principal stresses and displacements of  the antiplane boundary 
layer (a) are asymptotically secondary for the plane layer (b) and vice versa. 

The properties of an (SSS)bo~a described above enable us to present the structural formula in greater 
detail and to write it as 

(SSS)total ---- (SSS)int + ~,ct (SSS)gound + (SSS)gound (5.5) 

In this equality the exponents 0t and I~ are assumed to be still undetermined. It is explained below 
that it is necessary to assign some value to them, depending on the nature of  the clamping of the edge 
of the shell. 

6. We shall describe the arguments leading to the determination of the exponents ct and 13 in the 
structural formula (5.5) using an example, when the edge of the shell coincides with the coordinate 
surface Ctl = 0 and the conditions 

x I = 0, XI2 = 0, Xl3 = 0 (6.1) 

are specified on it, which denote the absence of edge damping (it is assumed that the SSS being discussed 
is caused by forces which are distributed over the shell faces and there are no edge actions). 

In (6.1), the asymmetric stresses, the meaning of which is determined by the first three relations (2.1), 
are denoted by xl, x12, x13. 

We use the structural formula (5.5), expand (SSS)mt using formulae (2.1), and (SSS)botma using relations 
(5.1) and (5.4) and rewrite (6.1) as follows: 

~l (xo + ~-t+2p-c,cl ) + ~-t+t,+aES{l (a) + Z,fJESH(b) = 0 

kl (z02 + ~k-t+2p-c,cl 2) + ~,aESi2 (a) + ~,-I+P+fJES~2 (b) = 0 (ctf= 0) 

~P ('cO 3 + ~113 + ~.-1+2p-c~2~23 )+ ~,-I+P+aES{3 (a) + ~ES13 (b) = 0 

(6.2) 

Henceforth, in terms referring to (SSS)t, ound, the partial variability index x is replaced by the general 
indexp. It is easy to trace that this has no effect on the final conclusions since g ~< p. 

It follows from (2.4) and (2.6) that, in (6.2), the factors ~t, ~,p, ~,c for a shell which does not degenerate 
into a plate can be expressed as 

~I = R ~ / , =  = ; ~c 

-if' ~ - [ ( R I h )  2,-1, p ~ l l 2  

and it may be asstuned that the exponents of ~. appearing here are fixed if the half thickness h, the character- 
istie radius R and the variability index t of the required SSS are known. It is necessary to express the 
exponents tx and 13 in (6.2) in terms of / ,p  and c so that contradictions do not arise, the meaning of which 
is revealed below. In the case under consideration (a free edge) they have to be specified by the formulae 

ot = 2p - c, [3 = p (6.3) 

Then, if the first terms in Eqs (6.2) are expressed in terms of  the forces and moments of  the 
Kirchhoff-Love theory using (2.9), we obtain 

kP [2~-I+2p-CES{I (a) + ES 11 (b)] = r l i = - ~h  + ~ 3GI 
2h 2 

s n  _ ~?p-c ~x]2 (cq = 0) ~'2P-C[ESI2(a)+ ~'-t+"ES~2(b)] = r12 = - 2h 

~p[~-I+2p-CES~3(a)+ESI3(b)] = rl 3 = _~p [x03 + ; x ]  3 + ,~a-1+2p-cr2"2~ "1311 

(6.4) 

(Here, of course, 512 does not have the same meaning as Sl2(a) and S12(b).) 
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We shall assume for the present that the quantities r11, r12, r13 in (6.4) are known and that equalities 
(6.4) are the boundary conditions for the (SSS)botmd boundary layer. According to the iterative scheme 
for the integration of the three-dimensional equations of the theory of elasticity [9] it is necessary to 
add to them the conditions for the modified Saint Venant principle to be applicable, that is, to require 
that (SSS)bou,d should decay "in the main" (apart from quantities which are assumed to be negligibly 
small in the initial approximation of the iterative procedure which is adopted). Four boundary conditions 
for (SSS)~t follow from this. They have been discussed in detail in [2, 10] and, in the initial approximation, 
are identical with the well-known boundary conditions of the Kirehhoff-Love theory. 

Ti = Sn = GI = Ni +3H l~s  = 0 (6.5) 

Hence, an important feature of the asymptotic process of the integration of the three-dimensional 
equations of the t h e o r y  of elasticity for thin bodies (when the faces are not clamped) is revealed in the 
case under consideration (a free edge). In it, for an accuracy characteristic p = 2 / -  2p, the problem 
of the approximate construction of (SSS)int separates into an independent treatment which is equal to 
the calculation of a shell using the Kirchhoff-Love theory, taking account of the four boundary conditions 
adopted in it. Gener~dly speaking, this assertion also holds for other edge clamping conditions (exceptions 
are possible but they do not involve important practical cases). Consequently, it can be asserted that 
the Kirchhoff-Love theory is a mathematically based approximate method (when 13 = 2 / -  2p) for the 
internal calculation of shells. 

We now return to the case when the edge is free and assume that the boundary-value problem for 
constructing (SSS)int has already been solved, that is, we shall assume that all the quantities ~, ~ ,  ~3 
occurring in (6.2) relating to it are known. They are assumed (Section 2) to be functions of the same 
asymptotic order. However, for certain values of cq and ix2, these or others of them may pass through 
zero. In particular, it follows from the boundary conditions (6.5) and formula (2.9) that x ° = x~ -- 
x°m = 0 when ¢tl = 0. The equalities 

~.-t+2P-CES~l (a) + ES, t(b) = 0 

ES12(a)+ ~.-t+CES~2(b) = -~xtl2 ((X I = 0) (6.6) 

h ~,-I+2p-cES[3(a)+ESI3(b)=-'¢I3 - , ~  ~ ~i3 

are therefore valid, and these equalities can be treated as boundary conditions for the antiplane and 
plane boundary layers. 

The non-contradictory nature of the boundary conditions (6.6) and, consequently, the validity of the 
choice of a and 13 using formulae (6.3) arises from the following considerations. By virtue of (2.5) and 
(2.6), the inequalities 

- l  + 2 p - c < ~  O, - / + c < 0  (6.7) 

are valid for a shell (and a plate). 
It follows from these that relations (6.6) enable one to take the limit as ~, ~ ** since there are no 

positive powers of ~. in them. At the same time, the limiting boundary equalities (6.6), generally speaking, 
subdivide into two groups. The second equality (6.6), when ~. ~ **, is transformed into the boundary 
condition for an antiplane boundary layer while the first and third equalities of (6.6) define two boundary 
conditions of a plane boundary layer. The case when it is necessary to take the equality sign in the first 
relation of (6.7) is ma exception (in a plate, this occurs for anyp and, in a shell, whenp I> 1/2). It is then 
necessary to take account of the corrections due to the antiplane boundary layer (the terms marked 
with primes) in the boundary conditions for the plane boundary layer. In all cases, the number of limiting 
conditions (6.6) corresponds to the order of the differential equations for which they must be set out. 
This is a first indication of the consistency of formula (6.3) for the numbers ct and 13. 

We further note that the edge values of the quantities x]2, x°3, 'c]3, "~]3 do not belong to those 
which, when txl -- 0, must vanish by virtue of the boundary conditions of the Kirchhoff-Love theory, 
and, to be specific, we accept that these quantities are of the order of 7~ ° for a selected intensity of the 
external forces. The limiting boundary-value problems for the antiplane and plane boundary layers will 
then, in the general case, be inhomogeneous, and it becomes impossible for either (SSS)~ound or 
(SSS)~una to be identically equal to zero. This is the second indication of the consistency of formulae 
(6.3) for ct and I~. 
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Remark. In special cases, the boundary values of the quantities which have been enumerated can 
become identically zero. This means that formulae (6.3) for a and 15 must be changed in the ease of such 
problems. 

It can be shown that, if one ignores the special cases which have been mentioned, the indications of 
consistency in the choice of the values of a and I~ given here will only be observed when formulae (6.3) 
are used. 

The corresponding arguments are simple in principle, but require a thorough inspection of many 
versions. We shall not dwell on them here. 

7. In the general ease, a pair of formulae for the exponents a and 13, a group of four boundary 
conditions for the Kirchhoff-Love theory and the limiting conditions for the (SSS)bound correspond to 
each group of three conditions in the theory of elasticity. For instance [2, 10, 11], in the case of a hinged, 
supported edge, 

Oil = "2 = "3 = 0 (7.1) 

and, for a damped edge 

1)1 = 1)2 ----" 1)3 = 0 (7.2) 

the numbers a and 13 have to be specified by the formulae 

a = p, ~ = l (7.3) 

In the case of relations (7.2), they lead to the boundary conditions 

U 1 = U2----'W = ' ~ i  = 0 

and the limiting boundary conditions 

RV I (b) + X-t+2p-cRVl"(a) = O, V 2 (a) + V~(b) = 0 

_ r 2 " l - 1 + 2 p - c 4 ~ 2  RV~(b)+ k-t+2p-cRV.((a)=-~1)[ '~ "~ "3 

and, in the case of relations (7.1), to the boundary conditions 

(7.4) 

(7.5) 

T 1 = u 2 = w = G  1 = 0  

and the limiting boundary conditions 

ESll(b)  = O, RV3(b)+.k-t+2P-CR~'(a)=-qV.~ -q2k- t+2p-cv f ,  RV2(a ) + RV2(b) = 0 (7.6) 

This follows from the same considerations as in Section 6. Without repeating them, we note solely 
that, here, formula (2.1) for 1)3 had to be refined and taken in the form 

l - c  . 0 - l + c .  1 . D 3 = ~ ( 0  3 + ~ U 3 "1- r2~, -2 /+2pl)2)  3 (7.7) 

A term with a factor ~2 was introduced into this equality on the basis of general asymptotic reasoning. 
It is necessary to take account of this because, when c = 2p - l, it is commensurate with the term with 
the factor ~. 

Remarks. 1. The need to refine (7.7) means that not only the hypothesis concerning the non-extensibflity of a 
normal element but also the supposition regarding a linear distribution of the bending a) 3 throughout the thickness 
are too crude for the investigation of boundary phenomena in these bodies. 

2. Strictly speaking, the terms in the limiting boundary conditions (7.4) and (7.5) with the factor ~,-4+2p-~ only 
have to be retained when c = 2p - I. 

3. The inclusion of a square factor in formula (7.7) does not mean that it is necessary to give up using the 
Kirchhoff-Love theory for the internal calculation of thin elastic bodies. The value of 1~ can be found by the method 
of iterations [5, 6]. The formulae (which is common to plates and shells) 
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aJ] =V(X l +Xl)/2 

holds for this in which x], x I can be determined from a calculation using the Kirchhoff-Love theory using the 
intermediate formulae (2.9). 

4. If one is dealing with the bending of a plate, then it will follow from the last formulae of(2.1) and the boundary 
condition v0 = 0 that only the "refining" term will remain on the fight-hand side of formula (7.7) and on the right- 
hand side of the limithag equation (7.5). 

8. We shall now discuss so-called shear theories from the point of view of the results which have been 
obtained and, for bre, vity, we shall start out from the version of the shear theory of the bending of plates 
described in [12]. In the notation adopted there, the initial relations of this theory are written as 

Mrr = -D "O,r r + V + + ~,Or , 
r 7 

X,O Moo=-D[-~/-+~)'°°+r2 Va), rr ]--~(~'-Orr -- 7 ]  

r,,o,- ',,oi+ 2 Z.O0 
M r O = - ( ] - V ) D L - - - ~ - - - - ~ -  j F ( ~ - ÷ 7 ) - - ~  

D -  12(1_ v2), Eh 3 

(8.1) 

Here, h is the overall thickness, a~ and Z are required functions, of which the first is related to the 
flexure w by the formula 

= w + BDV2w (B = 6/(5Gh)) (8.2) 

V 2 is the Laplacian operator and r and 0 are polar coordinates. 
When there are no external forces, the equations 

D V 2 V 2 w  - 0, V2X - ~.2 X = 0 (8.3) 

hold for w and X. 
It may therefore be assumed that one is concerned with a combination of two approximate methods: 

one of them is obtained when w ~ 0, X -- 0, and the other when w ~ 0, X -- 0. 
The first method obviously has to be considered as a refined approach (with respect to the 

Kirchhoff-Love theory) to the construction of (SSS)mt. We therefore put X = 0 in (8.1) and compare 
the resulting formulae with the corresponding relations which follow from the asymptotic method in 
the case of an accuracy characteristic p = 4 / -  4q, that is, which follow from the asymptotic analogue 
of the shear theory of the bending of plates [5, 6]. 

In the notation used in [12], the relations in [5, 6] are written as 

.,r---o[w.,,(e,e)]- 
_Dh21 8 - 3 v  ( V 2 W )  rr.I " v(4+V) 

t lO( l  - v )  lO( l  - v )  

,,,oo -O["r ""'O ] = + - -  VWrr. -- r r 2 + 

Oh2{ 8 - 3 v  [(V2w) r (yEw),00  
- L 7 ' r 

Mro=-(l-v)o['w'-°rr 

, 

v(4+v)  (V2W).rr 
+ 10(1 -- V) 

(8 .4)  
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(h is the half-thickness of the plate). 
Comparison of (8.4) and (8.1) reveals a discrepancy (which is numerically small but does not vanish 

when h -o 0) in all terms in which formulae (8.1) differ from the formulae of the Kirchhoff-Love theory 
when ~ ~ 0. This is explained by the fact that one of the two following techniques is used in the 
construction of shear theories. 

1. The formal extension of the variational principles of the spatial theory of elasticity to the two- 
dimensional theory of shells. It is assumed, for example, that the forces perform work in the displace- 
ments of the median surface and that the moments perform work in the angles of rotation. However, 
it has been shown in [2, 13] that the error in such an assumption is of the same order of magnitude as 
the error in the hypothesis that a normal is preserved. 

2. The use of a three-dimensional formulation of variational principles in conjunction with the 
hypothesis of a linear distribution of the main stresses and strains throughout the thickness of the shell. 
However, asymptotic analysis shows that, with respect to the order of the errors, this is also equivalent 
to the hypothesis of the preservation of the normal. 

Hence, in carrying out an internal calculation, shear theory leads to amendments to the 
Kirchhoff-Love theory which require a certain correction. It turns out to be insignificant in the case 
of the theory of the bending of plates. However, numerical results are presented in [4] which show that 
the correction may turn out to be substantial in the theory of shells. 

The method corresponding to w = 0, ~ ~ 0, in the shear theory of the bending of plates [12] has to 
be treated as an approximate technique for constructing (SSS)t, ound. However, comparison with the results 
of the asymptotic integration of the three-dimensional equations of the theory of elasticity does not 
confirm this in the general case, not only quantitatively but not even qualitatively. 

9. In the overwhelming majority of important practical cases the boundary calculation of a shell, that 
is, the construction of (SSS)bound, can be carded out as a second and not always obligatory stage, assuming 
that (SSS)int has already been constructed. In particular, in the case of a free edge, the boundary 
calculation of the bending of a plate reduces in the initial approximation to the integration of Eqs (5.2) 
of the antiplane problem in the theory of elasticity taking into account the homogeneous face conditions, 
the condition of modified Saint Venant decay and the secondary boundary condition (6.6). In the latter 

- /+c condition, the term with a small factor ~, , which in the case of a plate is equal to ~-21+2v, can be 
discarded, that is, the boundary condition can be reduced to the form 

ESt2(a)=-~xll2 (ql =0) (9.1) 

In this equality it has to be assumed that the boundary value "~12 is known. It is determined using formulae 
(2.9) by an internal calculation using the Kirchhoff-Love theory, which has been carried out earlier. 
Since the boundary calculation is carried out approximately and intended for constructing 
exponentially decaying solutions, it is possible to put A{lO/Orll = 0/Or h in system (5.2) and to change 
to an antiplane problem, which is solved in Cartesian coordinates for the half strip {rll I> 0, -1 

~< +1}. 
We further note that the quantity x12 Inl =0 in the boundary condition (9.1) is a function of a single 

variable q2, and derivatives with respect to this variable do not occur in Eq. (5.2). Consequently, (9.1) 
can be replaced by the boundary condition 

ESI2(a) = - 4  (ql = 0) (9.2) 

and, in the final analysis, it is possible to obtain a standard problem to the solution of which an 
approximate boundary calculation of a plate in the region of the free edge always reduces (it is assumed 
that the solution of the standard problem must be multiplied by the boundary value of the quantity 

Remark. In [2, 10], standard problems are also derived for other conditions for the clamping of the edge. 

Hence, in cases, when it is necessary to investigate not only the internal but also the boundary zones 
of a shell, there is no need to construct two-dimensional theories of a higher order than the 
Kirchhoff-Love theory (shear theories, for example). The splitting of the overall calculation into an 
internal calculation, for which the Kirchhoff-Love theory is mathematically well founded, and a boundary 
calculation, which approximately reduces to solving antiplane and plane problems in the theory of 
elasticity, appears to be more natural both from the mathematical and the physical points of view. 
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The method corresponding to w --- 0, X ¢ 0 in the shear theory of the bending of plates [12] obviously 
has to be treated as an approximate technique for constructing (SSS)bound. However, comparison with 
results of  the asymptotic integration of  the three-dimensional equations of the theory of elasticity does 
not confirm such an assumption in the general case. This will be further discussed below, but, for the 
present, we note that, when the above-mentioned method is used, it is necessary to retain just the terms 
with the function X in formulae (8.1) and to assume that X satisfies the second equation of (8.3). Allowing 
for this, it is easy to find the asymptotic form of the corresponding SSS. These are identical with 
the first asymptotic form (5.4) which is distinctiveeecexbfor (SSS)~,ounO but directly opposite to the second 
asymptotic form (5.4.) which is characteristic of ~oOOJbound. 

The structural formula (5.5) specifies the asymptotic behaviour of the stresses which arise close 
to the edge of the shell. To fix our ideas, if we assume ~ ,  ~ j  in formulae (2.1) have the form 
O(~,°), then the comributions of the terms ~,a(SSS)~ound and kl~(SSS)~ound to the boundary value of  
(SSS)total will be asymptotically negligible (with respect to the stresses), while the inequalities t~ < I and 

< 1 are satisfied, respectively. 
The following conclusions ensue from this. According to formulae (6.3) for 0~ and 13 close to the 

free edge of a plate (when c = 2p - l), the antiplane boundary layer, which is taken separately, 
approximately determines the boundary correction to the stresses. If it is a question of a shell, which 
has not degenerated, with a free edge in the case of a small value of n, the index of variability of the 
external action, that is, when c = 0, ~ < //2, then the boundary correction will, in general, be 
asymptotically unimportant. Formulae (7.3) hold for tx and 13 when the edge is damped.  It follows 
from these points t]aat, in a shell (in particular, when it degenerates into a plate), the boundary 
correction will not be asymptotically negligible in this case for any values of  the index of variability 7t 
of the boundary data. It is approximately determined by the plane boundary layer which has been taken 
separately. 

Remark. These genc.~ral considerations agree with the results in [14]. The effect of the application of axially 
symmetric static and kinematic actions at the edge of a closed circular cylindrical shell is considered basing on the 
three-dimensional theory of elasticity in this paper, that is, a situation is discussed in which an antiplane boundary 
layer is excluded by virtue of the axial symmetry and the boundary corrections, according to the assertions which 
have been formulated here, do not asymptotically disappear when and only when the components of the 
displacements are specified at the edge. This is confirmed by the results in [14]. 

10. We now compare, from a formal mathematical point of view, boundary calculations in the theory 
of the bending of plates carded out using the asymptotic method described in Section 9 and the method 
which corresponds to w --- 0, X ~ 0 and follows from the shear theory [12]. 

In the polar coordinates r and 0, the latter method leads to integration of the equation 

02X II  o~ X 1 O2X1 lO 
(10.1) 

All of its solutions when h ---> 0 have a large variability with respect to r. Hence, if the boundary r = 
r0 is considered to be not too close to the pole and it is assumed that the variability of the required 
solution with respect to 0 is not too large, then the terms in the square brackets in (10.1) can be neglected. 
Their presence is unjustified at the degree of approximation at which Eq. (10.1) was derived. 

Within the framework of the approaches which have been described here in formulae (6.3), it 
is necessary, in the case of a plate, to interpret c in accordance with formula (2.7). We shall put 
et = l > 13 = p. This means that the boundary calculation approximately reduces to the construction 
of the decaying solution of Eqs (5.2) of the antiplane problem while satisfying the boundary condition 
(9.2). As was mentioned in Section 9, it can be assumed in (5.2) thatA1 = 1 and the system reduces 
in a known manner to a harmonic equation, the solution of which can be written in the form of a 
series 

I ?  ] ,10 , $23 = ~'.a n exp - 2 1 nrlt cos 2 

The series (10.2) satisfies, term-by-term, both the face requirements $23 = 0 when ~ = +_ 1 and the 
decay conditions, and the edge value $12 is expressed in the form of a trigonometric series 
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2n 1 
st2lrll=0 = Zan sin n~ (10.3) 2 

In this series, the numerical coefficients a,, are defined in an obvious way for a specified right-hand 
side of equality (10.3). Consequently, the problem of constructing the antiplane boundary layer subject 
to the boundary condition 

Sl2l,~l=o = f(~) 

is solved in an elementary manner for an extremely wide class of odd functionsf(~). 
In particular, when the boundary condition has the form (9.2), that is, when it is an issue of the standard 

problem in Section 9, only the first term of the series can be retained on the right-hand side of equality 
(10.2) with a sufficient accuracy. However, when n = 1, the harmonic equation for $23 is practically 
identical with Eq. (10.1) if the term in square brackets is discarded in the second equation and the 
variable ~ is eliminated from the first equation using the substitution $23 = sn(rh) sin ((2n-1)/2)n~ (we 
recall that, in (10.1) and in [12], h is to be understood not as the half-thickness of the plate but its overall 
thickness). 

11. It follows from what has been described above that asymptotic analysis confirms the possibility 
of using the shear theory of bending for the complete (including the boundary zones) approximate 
analysis of the SSS of a plate only when, firstly, its edge is free and, secondly, the conditions of the 
problem envisage a fairly simple law for the distribution of the stresses 012, which are transmitted to 
the edge of the plate, throughout the thickness (the second requirement is certainly satisfied when no 
external forces are applied to the edge of the shell). At the same time, the asymptotic and shear theories 
turn out to be inadequate not only from the point of view of the final result but also from the point of 
view of the simplicity of the mathematical apparatus. 

The assertion which has been put forward rests largely on the fact that the asymptotic relations 

(SSS)int -- ~a(SSS)~ound > > TII3(SSS)bound 

hold; these follow from formula (6.3) for the exponents o~ and 13. 
If the edge of the plate is clamped or supported by a hinge, then the exponents tx and 13 will be 

determined by formula (7.3) instead of (6.3) 

(SSS)int -- 1115(SSS)Lund > > Tlct(ssS)bound 

They show that, in such cases, the investigation of boundary elastic phenomena in a bending plate 
using shear theories has no meaning. In the best case, it is only possible with such an approach to 
construct solely the asymptotically secondary term Tl~(SSS)abou~ d in the structural formula (5.5). 

The asymptotic approach also holds good in the case of the bending of plates with a rigid or hinged 
edge. In these cases, it only becomes somewhat more complex. Instead of a harmonic problem of an 
antiplane boundary layer, it is necessary to solve a biharmonic problem of a plane boundary layer and, 
consequently, instead of the method of trigonometric series, it is necessary to use Papkovich's method, 
for example. 

For shells which do not degenerate into a plate, at the present time it is impossible to consider the 
construction of shear theories as being completed. Papers [4, 15] which deal with this problem have 
revealed the great unwieldiness of the corresponding formulae and equations, and the question as to 
the correctness of the use of such equations for a boundary calculation has not been raised until now. 
At the same time, no new treatments are required for the extension of the technique described here 
of separate internal and boundary calculations to shells. The Kirchhoff-Love theory holds good for an 
approximate internal calculation while, as previously, for the boundary calculation it will be necessary 
to solve the well-studied antiplane and plane problems of the theory of elasticity. The decaying solutions, 
for which the curvature of the shell is a secondary factor, will be subject to construction. Hence, the 
specific nature of the boundary calculations of shells, which do not degenerate into a plate, will lie only 
in the fact that the number of cases requiring the treatment of plane boundary layers is increased. The 
need to overcome the complexity of the shear theory of shells becomes superfluous. 
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